A MUSCL method satisfying all the numerical entropy inequalities

نویسندگان

  • François Bouchut
  • Ch. Bourdarias
  • Benoit Perthame
چکیده

We consider here second-order finite volume methods for onedimensional scalar conservation laws. We give a method to determine a slope reconstruction satisfying all the exact numerical entropy inequalities. It avoids inhomogeneous slope limitations and, at least, gives a convergence rate of ∆x1/2. It is obtained by a theory of second-order entropic projections involving values at the nodes of the grid and a variant of error estimates, which also gives new results for the first-order Engquist-Osher scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Entropy Satisfying Muscl

For the high order numerical approximation of hyperbolic systems of conservation laws, we propose to use as a building principle an entropy diminishing criterion instead of the familiar total variation diminishing criterion introduced by Harten for scalar equations. Based on this new criterion, we derive entropy diminishing projections that ensure, both, the second order of accuracy and all of ...

متن کامل

Robustness of MUSCL schemes for 2D unstructured meshes

We consider second-order accuracy MUSCL schemes to approximate the solutions of hyperbolic system of conservation laws. In the context of the 2D unstructured grids, we propose a limitation procedure on the gradient reconstruction to enforce several stability properties. We establish that the MUSCL scheme preserves the invariant domains and satisfy a set of entropy inequalities. A conservation a...

متن کامل

The Entropy Satisfying Discontinuous Galerkin Method for Fokker-Planck equations

In Liu and Yu (SIAM J Numer Anal 50(3):1207–1239, 2012), we developed a finite volume method for Fokker–Planck equations with an application to finitely extensible nonlinear elastic dumbbell model for polymers subject to homogeneous fluids. The method preserves positivity and satisfies the discrete entropy inequalities, but has only first order accuracy in general cases. In this paper, we overc...

متن کامل

An Entropy Satisfying Conservative Method for the Fokker-Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model

Abstract. In this paper, we propose an entropy satisfying conservative method to solve the Fokker–Planck equation of the finitely extensible nonlinear elastic dumbbell model for polymers, subject to homogeneous fluids. Both semidiscrete and fully discrete schemes satisfy all three desired properties—(i) mass conservation, (ii) positivity preserving, and (iii) entropy satisfying—in the sense tha...

متن کامل

Entropy satisfying flux vector splittings and kinetic BGK models

We establish forward and backward relations between entropy satisfying BGK relaxation models such as those introduced previously by the author and the rst order ux vector splitting numerical methods for general systems of conservation laws. Classically, to a kinetic BGK model that is compatible with some family of entropies we can associate an entropy ux vector splitting. We prove that the conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996